Classes and Objects

Work is the curse of the drinking classes.
—Oscar Wilde

Chapter Goals

e Objects and classes e Keywords public, private, and
e Encapsulation static
o References o Methods

OBJECTS

L

Every program that you write involves at least one thing that is being created or ma-
nipulated by the program. This thing, together with the operations that manipulate it,
is called an object.

Consider, for example, a program that must test the validity of a four-digit code
number that a person will enter to be able to use a photocopy machine. Rules for
validity are provided. The object is a four-digit code number. Some of the operations
to manipulate the object could be readNumber, getSeparatedigits, testValidity,
and writeNumber.

Any given program can have several different types of objects. For example, a pro-
gram that maintains a database of all books in a library has at least two objects:

L. A Book object, with operations like getTitle, isOnShelf, isFiction, and
goOutOfPrint.

2. A ListOfBooks object, with operations like search, addBook, removeBook, and
sortByAuthor.

An object is characterized by its state and bebavior. For example, a book has a state
‘escribed by its title, author, whether it’s on the shelf, and so on. It also has behavior,
like going out of print.

Notice that an object is an idea, separate from the concrete details of a programming
ANguage. It corresponds to some real-world object that is being represented by the
Program.

{\H object-oriented programming languages have a way to represent an object as a
Variable in 4 program. In Java, a variable that represents an object is called an object

erence,

86

Chapter 2 Classes and Objects

CLASSES
A class is a software blueprint for implementing objects of a given type. An object is 5
single instance of the class. In a program there will often be several different instances
of a given class type.

The current state of a given object is maintained in its data fields or instance variables,
provided by the class. The methods of the class provide both the behaviors exhibited
by the object and the operations that manipulate the object. Combining an object’s
data and methods into a single unit called a class is known as encapsulation.

Here is the framework for a simple bank account class:

public class BankAccount

{
private String myPassword;
private double myBalance;
public static final double OVERDRAWN_PENALTY = 20.00;
//constructors
/* Default constructor.
* Constructs bank account with default values. */
public BankAccount ()
{ /* implementation code */ }
/* Constructs bank account with specified password and balance. */
public BankAccount(String password, double balance)
{ /* implementation code */ }
//accessor
/* Returns balance of this account. */
public double getBalance()
{ /* implementation code */ }
//mutators
/* Deposits amount in bank account with given password. */
public void deposit(String password, double amount)
{ /* implementation code */ }
/* Withdraws amount from bank account with given password.
* Assesses penalty if myBalance is less than amount. */
public void withdraw(String password, double amount)
{ /* implementation code */ }
¥

PUBLIC, PRIVATE, AND STATIC

The keyword public preceding the class declaration signals that the class is usable by
all client programs. If a class is not public, it can be used only by classes in its own
package. In the AP Java subset, all classes are public.

Similarly, public methods are accessible to all client programs. Clients, however, are
not privy to the class implementation and may not access the private instance variables
and private methods of the class. Restriction of access is known as information hiding.

Methods 87

In Java, this is implemented by using the keyword private. Private methods and vari-
dbles in a class can be accessed only by methods of that class. Even though Java allows
public instance variables, in the AP Java subset all instance variables are private.

A static variable (class variable) contains a value that is shared by all instances of the
class. “Static” means that memory allocation happens once.

Typical uses of a static variable are to

o keep track of statistics for objects of the class

o accumulate a total

o provide a new identity number for each new object of the class.
For example:

public class Employee

{
private String name;
private static int employeeCount = O; //number of employees
public Employee(< parameter list >)
{
< initialization of private instance variables >
employeeCount++; //increment count of all employees
}
}

Notice that the static variable was initialized outside the constructor and that its value
can be changed.

Static final variables (constants) in a class cannot be changed. They are often de-
clared public (see some examples of Math class constants on p. 172). The variable
OVERDRAWN_PENALTY is an example in the BankAccount class. Since the variable is pub-
lic, it can be used in any client method. The keyword static indicates that there
is a single value of the variable that applies to the whole class, rather than a new in-
stance for each object of the class. A client method would refer to the variable as
BankAccount . OVERDRAWN_PENALTY. In its own class it is referred to as simply OVER-
DRAWN_PENALTY.

See p. 90 for static methods.

B

METHODS

-~
 Headers

2 All .method headers, with the exception of constructors (see on the next page) and
- Static methods (p. 90), look like this:

public void withdraw (String password, double amount)
< ~— N7
access specifier return type method name parameter list

L. The access specifier tells which other methods can call this method (see Public,
Private, and Static on the previous page).

88

Chapter 2 Classes and Objects

2. A return type of void signals that the method does not return a value.
3. Items in the parameter list are separated by commas.

The implementation of the method directly follows the header, enclosed in a{y
block.

Types of Methods
CONSTRUCTORS

A constructor creates an object of the class. You can recognize a constructor by it
name—always the same as the class. Also, a constructor has no return type.

Having several constructors provides different ways of initializing class objects. For
example, there are two constructors in the BankAccount class.

L. The default constructor has no arguments. It provides reasonable initial values
for an object. Here is its implementation:

/* Default constructor.

* Constructs a bank account with default values */
public BankAccount ()

{

myPassword = "";
myBalance = 0.0;

}

In a client method, the declaration

BankAccount b = new BankAccount();

constructs a BankAccount object with a balance of zero and a password equal
to the empty string. The new operator returns the address of this newly con-
structed object. The variable b is assigned the value of this address—we say “b
is a reference to the object.” Picture the setup like this:

BankAccount
b
D—_—> myPassword lz}

2. The constructor with parameters sets the instance variables of a BankAccount
object to the values of those parameters.
Here is the implementation:

/* Constructor. Constructs a bank account with
* specified password and balance */
public BankAccount(String password, double balance)
{
myPassword = password;
myBalance = balance;

}

In a client program a declaration that uses this constructor needs matching
parameters:

Methods

BankAccount ¢ = new BankAccount ("KevinC", 800.00);

BankAccount
€
E——-) myPassword
myBalance 800.00

NOTE

band c are object variables that store the addresses of their respective BankAccount ob-
jects. They do not store the objects themselves (see References on p. 93).

ACCESSORS

An accessor method accesses a class object without altering the object. An accessor
returns some information about the object.

The BankAccount class has a single accessor method, getBalance (). Here is its im-
plementation:

/* Returns the balance of this account */
public double getBalance()
{ return myBalance; }

A client program may use this method as follows:

BankAccount bl = new BankAccount("MattW", 500.00);
BankAccount b2 = new BankAccount("DannyB", 650.50);
if (bl.getBalance() > b2.getBalance())

NOTE

The . operator (dot operator) indicates that getBalance () is a method of the class to
which b1 and b2 belong, namely the BankAccount class.

MUTATORS

A mutator method changes the state of an object by modifying at least one of its in-
Stance variables.

Here are the implementations of the deposit and withdraw methods, each of which
alters the value of myBalance in the BankAccount class:

/% Deposits amount in a bank account with the given password. */
Public void deposit(String password, double amount)

{

myBalance += amount;

/* Withdraws amount from a bank account with the given password.
* Assesses a penalty if the new balance is negative. x/
Public void withdraw(String password, double amount)

89

Chapter 2 Classes and Objects

myBalance -= amount; //allows negative balance
if (myBalance < 0)
myBalance -= OVERDRAWN_PENALTY;
I,

A mutator method in a client program is invoked in the same way as an accessor: us.
ing an object variable with the dot operator. For example, assuming valid BankAccount
declarations for b1 and b2:

bl.withdraw("MattW", 200.00);
b2.deposit("DannyB", 35.68);

STATIC METHODS

Static Methods vs. Instance Methods The methods discussed in the preceding
sections—constructors, accessors, and mutators—all operate on individual objects of a
class. They are called instance methods. A method that performs an operation for the
entire class, not its individual objects, is called a static method (sometimes called a class
method).

The implementation of a static method uses the keyword staticin its header. There
is no implied object in the code (as there is in an instance method). Thus if the code
tries to call an instance method or invoke a private instance variable for this nonex-
istent object, a syntax error will occur. A static method can, however, use a static
variable in its code. For example, in the Employee example on p. 87, you could add a
static method that returns the employeeCount:

public static int getEmployeeCount ()
{ return employeeCount; }

Here’s an example of a static method that might be used in the BankAccount class.
Suppose the class has a static variable intRate, declared as follows:

private static double intRate;
The static method getInterestRate may be as follows:

public static double getInterestRate()

{
System.out.println("Enter interest rate for bank account");
System.out.println("Enter in decimal formi®)i
intRate = I0.readDouble(); // read user input
return intRate;

B,

Since the rate that’s read in by this method applies to all bank accounts in the class,
not to any particular BankAccount object, it’s appropriate that the method should be
static.

Recall that an instance method is invoked in a client program by using an object
variable followed by the dot operator followed by the method name:

BankAccount b = new BankAccount();
b.deposit (password, amount) ; //invokes the deposit method for
//BankAccount object b

A static method, by contrast, is invoked by using the class name with the dot opera-
tor:

double interestRate = BankAccount.getInterestRate();

Methods

Static Methods in a Driver Class Often a class that contains the main () method
is used as a driver program to test other classes. Usually such a class creates no objects
of the class. So all the methods in the class must be static. Note that at the start of
program execution, no objects exist yet. So the main() method must always be static.

For example, here is a program that tests a class for reading integers entered at the
keyboard.

import java.util.x;

public class GetListTest

{

/* Return a list of integers from the keyboard. */
public static List<Integer> getList()
it

List<Integer> a = new ArrayList<Integer>();

< code to read integers into a>

return a;

/* Write contents of List a. */
public static void writeList(List<Integer> a)
{

System.out.println("List is : " + a);

public static void main(String[] args)

{
List<Integer> list = getList();
writeList(list);

NOTE

1. The calls to writeList(list) and getList() do not need to be preceded by
GetListTest plus a dot because main is not a client program: It is in the same
class as getList and writeList.

2. If you omit the keyword static from the getList or writeList header, you
get an error message like the following:

Can’t make static reference to method getList()

in class GetListTest
The compiler has recognized that there was no object variable preceding the
method call, which means that the methods were static and should have been
declared as such.

Method Overloading

'OW’IOaded methods are two or more methods in the same class that have the same
Mme but different parameter lists. For example,

?“blic class DoOperations

Public int product(int n) { return n * n; }
Public double product(double x) { return x * x; }
Public double product(int x, int y) { return x * y; }

91

92

Chapter 2 Classes and Objects

The compiler figures out which method to call by examining the method’s signature.
The signature of a method consists of the method’s name and a list of the parameter
types. Thus the signatures of the overloaded product methods are

product (int)
product (double)
product(int, int)

Note that for overloading purposes, the return type of the method is irrelevant.
You can’t have two methods with identical signatures but different return types. The
compiler will complain that the method call is ambiguous.

Having more than one constructor in the same class is an example of overloading,
Overloaded constructors provide a choice of ways to initialize objects of the class.

SCOPE

The scope of a variable or method is the region in which that variable or method is
visible and can be accessed.

The instance variables, static variables, and methods of a class belong to that class’s
scope, which extends from the opening brace to the closing brace of the class defi-
nition. Within the class all instance variables and methods are accessible and can be
referred to simply by name (no dot operator!).

A local variable is defined inside a method. It can even be defined inside a statement.
Its scope extends from the point where it is declared to the end of the block in which
its declaration occurs. A block is a piece of code enclosed in a {} pair. When a block is
exited, the memory for a local variable is automatically recycled.

Local variables take precedence over instance variables with the same name. (Using
the sarne name, however, creates ambiguity for the programmer, leading to errors. You
should avoid the practice.)

The this Keyword

An instance method is always called for a particular object. This object is an implicit
parameter for the method and is referred to with the keyword this.

In the implementation of instance methods, all instance variables can be written
with the prefix this followed by the dot operator.
Example 1

The deposit method of the BankAccount class can refer to myBalance as follows:

public void deposit(String password, double amount)
i
this.myBalance += amount;

}
The use of this is unnecessary in the above example.

Example 2

Consider a rational number class called Rational, which has two private instance
variables:

References
private int num; //numerator
private int denom; //denoninator

Now consider a constructor for the Rational class:

public Rational(int num, int denom)

{
this.num = num;
this.denom = denom;

}

It is definitely #ot a good idea to use the same name for the explicit parameters and the
private instance variables. But if you do, you can avoid errors by referring to this.num
aid this.denon for the current object that is being constructed. (This particular use
of this will not be tested on the exam.)

S

REFERENCES

Hefea'erce vs. Primitive Data Types

._All of the numerical data types, like double and int, as well as types char and boolean,
_are primative data types. All objects are reference data types. The difference lies in the
way they are stored.
Consider the statements

int numl = 3;
_int num2 numi ;

L}

The variables num? and nun2 can be thought of as memory slots, labeled nua1 and num2,
respectively:

numl num?2
5]

Ieither of the above variables is now changed, the other is not affecred. Each has its
Own memory slot.
Contrast this with the declaration of a reference data type. Recall that an object is
treated using new:

Date d = new Date(2, 17, 1948);

This declaration creates a reference var table d that refers to a Date object. The value of
5 the address in memory of that object:

Date
[+—
myYear ' 1948

Se the following declaration is now made:

93

Chapter 2 Classes and Objects

Date birthday = d;

This statement creates the reference variable birthday, which contains the same ad.
dress as d:

Date

d
I:} myMonth
birthday myDay 1

myYear 1948

Having two references for the same object is known as aliasing. Aliasing can cause
unintended problems for the programmer. The statement

d.changeDate();

will automatically change the object referred to by birthday as well.

What the programmer probably intended was to create a second object called
birthday whose attributes exactly matched those of d. This cannot be accomplished
without using new. For example,

Date birthday = new Date(d.getMonth(), d.getDay(), d.getYear());

The statement d. changeDate () will now leave the birthday object unchanged.

The Null Reference
The declaration

BankAccount b;

defines a reference b that is uninitialized. (To construct the object that b refers to
requires the new operator and a BankAccount constructor.) An uninitialized object
variable is called a nu/l reference or null pointer. You can test whether a variable refers
to an object or is uninitialized by using the keyword nul1:

if (b == null)
If a reference is not null, it can be set to null with the statement

b = null;

An attempt to invoke an instance method with a null reference may cause your

program to terminate with a Nul1lPointerException. For example,

public class PersonalFinances

{

BankAccount b; //b is a null reference

b.withdraw(password, amt); //throws a NullPointerException
//if b not constructed with new

References 95

NOTE

If you fail to initialize a local variable in a method before you use i, you will get a
compile-time error. If you make the same mistake with an instance variable of a class,
the compiler provides reasonable default values for primitive variables (0 for numbers,
false for booleans), and the code may run without error. However, if you don’t Do not makea}
initialize reference instance variables in a class, as in the above example, the compiler method call with an
will set them to nu1l. Any method call for an object of the class that tries to access
the null reference will cause a run-time error: The program will terminate with a
NullPointerException.

object whose value is
null.

Method Parameters
FORMAL VS. ACTUAL PARAMETERS

The header of a method defines the parameters of that method. For example, consider
the withdraw method of the BankAccount class:

public class BankAccount
{

public void withdraw(String password, double amount)

This method has two explicit parameters, password and amount. These are dummy or
formal parameters. Think of them as placeholders for the pair of actual parameters or
arguments that will be supplied by a particular method call in a client program.

For example,

BankAccount b = new BankAccount("TimB", 1000);
b.withdraw("TimB", 250) ;

Here "TinB" and 250 are the actual parameters that match up with password and
amount for the withdraw method.

NOTE

1. The number of arguments in the method call must equal the number of param-
eters in the method header, and the type of each argument must be compatible
with the type of each corresponding parameter.

2. In addition to its explicit parameters, the withdraw method has an implicit
parameter, this, the BankAccount from which money will be withdrawn. In
the method call

b.withdraw("TimB", 250);

the actual parameter that matches up with this is the object reference b.

- PASSING PRIMITIVE TYPES AS PARAMETERS

?"amelers are passed by value. For primitive types this means that when a method is
Aed, 2 new memory slot is allocated for each parameter. The value of each argument
2%pied into the newly created memory slot corresponding to each parameter.

ring execution of the method, the parameters are local to that method. Any
8es made to the parameters will not affect the values of the arguments in the calling

96 Chapter 2 Classes and Objects

program. When the method is exited, the local memory slots for the parameters g,
erased.
Here’s an example: What will the output be?

public class ParamTest

{
public static void foo(int x, double y)
{
x = 3;
¥y = 2.5;
}
public static void main(String[] args)
{
int a = 7;
double b = 6.5;
foo(a, b);
System.out.println(a + " " + b);
}
}

The output will be

7 6.5

The arguments a and b remain unchanged, despite the method call!
This can be understood by picturing the state of the memory slots during execution
of the program.
Just before the foo(a, b) method call:
b

7

At the time of the foo(a, b) method call:

.W

[e)

Just before exiting the method: Note that the values of x and y have been changed.

5] ()}

After exiting the method: Note that the memory slots for x and y have been reclaimed.
The values of a and b remain unchanged.

a b

References

PASSING OBJECTS AS PARAMETERS

In Java both primitive types and object references are passed by value. When an ob-
iect’s reference is a parameter, the same mechanism of copying into local memory is
used. The key difference is that the address (reference) is copied, not the values of the
individual instance variables. As with primitive types, changes made to the parameters
will not change the values of the matching arguments. What this means in practice is
that it is not possible for a method to replace an object with another one—you can’t
change the reference that was passed. It is, however, possible to change the state of the
object to which the parameter refers through methods that act on the object.

Example 1
A method that changes the state of an object.
/* Subtracts fee from balance in b if current balance too low. */

public static void chargeFee(BankAccount b, String password,
double fee)

{
final double MIN_BALANCE = 10.00;
if (b.getBalance() < MIN_BALANCE)
b.withdraw(password, fee);
}

public static void main(String(] args)

{

final double FEE = 5.00;

BankAccount andysAccount = new BankAccount ("AndyS", 7.00);
chargeFee (andysAccount, "AndyS", FEE);

BankAccount

myPassword "AndyS"

FEE andysAccount BankAccount

! fee (b myPassword "AndyS"

98 Chapter 2 Classes and Objects

Just before exiting the method: The myBalance field of the BankAccount object has
been changed.

FEE andysAccount BankAccount

d | "AndyS"

password

“AndyS "

After exiting the method: All parameter memory slots have been erased, but the object

remains altered.

BankAccount
FEE andysAccount

l 5 I l 4;}————————» myPassword "AndyS"

NOTE

The andysAccount reference is unchanged throughout the program segment. The ob-
y . g g prog 8

ject to which it refers, however, has been changed. This is significant. Contrast this

with Example 2 below in which an attempt is made to replace the object itself.

Example 2
A chooseBestAccount method attempts—erroneously—to set its betterFund param-

eter to the BankAccount with the higher balance:

public static void chooseBestAccount(BankAccount better,
BankAccount bl, BankAccount b2)

{
if (bl.getBalance() > b2.getBalance())
better = bl;
else
better = b2;
}

public static void main(String[] args)

{

BankAccount briansFund = new BankAccount("BrianL", 10000);
BankAccount paulsFund = new BankAccount("PaulM", 90000) ;
BankAccount betterFund = null;

chooseBestAccount (betterFund, briansFund, paulsFund);

References

The intent is that betterFund will be a reference to the paulsFund object after ex-
ecution of the chooseBestAccount statement. A look at the memory slots illustrates

why this fails.

Before the chooseBestAccount method call:

z

briansFund

[+—

BankAccount

myPassword "BrianL"

myBalance 10000

BankAccount
paulsFund
D——__» myPassword
myBalance 90000
betterFund

L]

[At the time of the chooseBestAccount method call: Copies of the matching references

briansFund BankAccount

/ [:::E} p

| myPassword "BrianL"
, bt

\E__—+ myBalance 10000
paulsFund BankAccount

1/ myPassword
\ b2

\E—> myBalance 90000
betterFund

A

! better

100

briansFund

il
i

Chapter 2 L1asses aiid wujeds

paulsFund

I
I

b2

?

betterFund

N

better

BankAccount

myPassword "BrianL"

myBalance 10000

BankAccount

myPassword "PaulM"

myBalance 90000

|l

After exiting the method: All parameter slots have been erased.

briansFund

?
i

paulsFund

?
I

betterFund

N

Note that the betterFund reference continues to be null, contrary to the program-

mer’s intent.

The way to fix the problem is to mo
account. Returning an object froma method

of the object.

public static BankAccount chooseBestAccount(BankAccount bl,

BankAccount b2)
{

BankAccount better;

BankAccount

myPassword "BrianL"

myBalance 10000

BankAccount

myPassword "PaulM"

myBalance 90000

if (bl.getBalance() > b2.getBalance())

better = bl;

dify the method so that it returns the better
1eans that you are returning the address

B

|

References

else
better = b2;
return better;
}
public static void main(String[] args)
{
BankAccount briansFund = new BankAccount("BrianL", 10000);
BankAccount paulsFund = new BankAccount("PaulM", 90000);
BankAccount betterFund = chooseBestAccount(briansFund, paulsFund);
}
NOTE

The effect of this is to create the betterFund reference, which refers to the same object
as paulsFund:

paulsFund

myPassword
betterFund

[::::E¥________, myBalance 90000

What the method does 7ot do is create a new object to which betterFund refers. To do
that would require the keyword new and use of a BankAccount constructor. Assuming
' thata getPassword () accessor has been added to the BankAccount class, the code would

~ look like this:

BankAccount

public static BankAccount chooseBestAccount(BankAccount bl,
BankAccount b2)

{
BankAccount better;
if (bl.getBalance() > b2.getBalance())
better = new BankAccount(bl.getPassword(), bl.getBalance());
else
better = new BankAccount(b2.getPassword(), b2.getBalance());
} return better;

Using this modified method with the same main() method above has the following

101

102 Chapter 2 Classes and Objects

BankAccount
briansFund
myBalance 10000
BankAccount
paulsFund
E—_-; myPassword
myBalance 90000
BankAccount
betterFund
E--—» myPassword
myBalance 90000

Modifying more than one object in a method can be accomplished using a wrapper
class (see p. 169).

Chapter Summary

By now you should be able to write code for any given object, with its private data
fields and methods encapsulated in a class. Be sure that you know the various types of
methods—static, instance, and overloaded.

You should also understand the difference between storage of primitive types and
the references used for objects.

