AP Java chapter 2

Concepts:
Fields Methods (accessor, mutator)
Constructors Assignment and conditional statements
parameters

Constructs:
field constructor parameter
assignment (=) | block return statement
void, compound assignment operators (+=,-=) | if

Source code for TicketMachine (nai've-ticket-machine on CD)
/**

* TicketMachine models a naive ticket machine that issues
* flat-fare tickets.

* The price of a ticket is specified via the constructor.

* Jt is a naive machine in the sense that it trusts its users
* to insert enough money before trying to print a ticket.
* It also assumes that users enter sensible amounts.

* @author David J. Barnes and Michael Kolling

* @version 2003.12.01

*/

public class TicketMachine

{

/I ' The price of a ticket from this machine.
private int price;

// ' The amount of money entered by a customer so far. — | Fields
private int balance; defined
// 'The total amount of money collected by this machine.
private int total;

[

* Create a machine that issues tickets of the given price.
* Note that the price must be greater than zero, and there
* are no checks to ensure this.

*/ — | Constructor

public TicketMachine(int ticketCost) initializes

{ variables
price = ticketCost;

balance = 0;
total = 0;
}




[k
* Return the price of a ticket.
*/

public int getPrice()

{

return price;

}

/>X<>X<
* Return the amount of money already inserted for the
* next ticket.

*/
public int getBalance()
{
return balance;
}
/**
* Receive an amount of money in cents from a customer.
*/
public void insertMoney(int amount)
{
balance = balance + amount;
}
/**

* Print a ticket.

* Update the total collected and

* reduce the balance to zero.

*/

public void printTicket()

{
// Simulate the printing of a ticket.
System.out.printn( " #######HHH#H#HH#TE");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.printIn(" #####H##H ")
System.out.println();

/I ' Update the total collected with the balance.
total = total + balance;

// Clear the balance.

balance = 0;

methods




Chapter 2.3 Fields, constructors and methods
* Source code broken into outer wrapping, and inner part.
o Outer wrapping only names the class.

o Inner wrapping does all the work. IL.e.

public class TicketMachine
{

}

inner part goes here

* Inner part of class defines fields, constructors, methods
o Fields = store data for each object to use (also called instance variables)
o Constructors = correctly set up each object when first created
o Methods = implement behavior of objects.

In TicketMaster:

* Fields = price, balance, total
o Price stores fixed price of a ticket
o Balance stores amounted inserted into machine by user
o Total stores total inserted by all users

/I ' The price of a ticket from this machine.

private int price;

// ' The amount of money entered by a customer so far.
private int balance;

// ' The total amount of money collected by this machine.
private int total;

Note:
// = comment on single line
/* ...*/ comment on multiple lines.
o Fields are always defined as private
o Field definitions must include type (i.e. int).
o Fields = space inside an object into which to store values.
* Constructors = (where initialization takes place).
public TicketMachine(int ticketCost)
{
price = ticketCost;
balance = 0;
total = 0;
}
o Constructor initializes object to a reasonable state.
Have same name as class in which they are defined.

(@)

o Fields are initialized in constructor. Some set to integer (i.e. 0); some set to

parameter to be entered after program is run (i.e. ticketCost).



Chapter 2.4 Passing data via parameters
* Methods and constructors receive values via parameters

¢ Parameters defined in header of constructor ene

O

Blue): Create Object

i.e. public TicketMachine(int
. # Create a machine that issues tickets of the given price.
thketCOSt) A Note that the price must be greater than zero, and there

. . A heck: this.
Value entered into parameter 1ickefCost  Taxetmachme(int ticketcost)

when object is created: i
. MName of Instance: ticketMal
tickteCost labels constructor space = -
.. new TicketMachine v!
area inside constructor for values.

Value entered into field, price,

Formal Parameters = names of €

Ok ) Cancel )

parameters outside (ticketCost)

Actual Parameters = values placed inside parameters. (500)

Scope = section of source code from where variable can be accessed.
Lifetime = how long variable continues to exist before it is destroyed. Life
of parameter is limited to single call of constructor or method. After
constructor call, parameter loses values. Fields (price) retain values.

Chapter 2.5 Assignments:
Assignment Statements store value on right side of statement in the variable named
on the left. (price = ticketCost) ticketCost goes into price . price <= ticketCost.
* Generic description: Variable = expression
* Expression =

(@)
©)

compute values to place into variable
Expression type must match variable type

Chapter 2.6 Accesssor Methods:

* Methods have two parts:

o

Header

[

* Return the price of a ticket.
*/
public int getPrice()

* Blue lines = comment describing what method does
* Last line = method signature
* Different from field declaration because of: following
parenthese, no sem colon.

* Remainder of method after header

* Enclosed in { } declarations and statements inside {} called a block

* Contain declarations and statements what happens when method is
called.



* Differences between signatures of constuctors (public
TicketMachine (int TicketCost) and methods (public int
getPrice()

o Method has return type of int, constructors
(TicketMachine) can not have a return type.
(parameter, TicketCost has type of int)

o Constructors and methods can have 0 to any amount of
parameters

* Statement in body = return price;
o Called return statement
o Return statement returns value of type stated in method
signature.
o Return statement is always last statement in a method.
* Method call = question to the object. (what is price of ticket?); return statement
provides answer. (shows contents of field price.
* Accessor Methods: return information about the state of an object.
* Provide access to that state.
* Usually in form of return statement (also by printing information).

Chapter 2.7 Mutator Methods

o Mutator Methods change the value of one or more fields. Change the state of the
object.

o Objects exhibit different behavior before and after mutator is called.

o Void return type means that method does not return any value to caller.

Chapter 2.8 Printing Methods

o The method System.out.println is a built in method that prints to terminal.

o Format = System.out.println (““ text to be printed”);

o Format to concatenate strings and values = System.out.println (“text * + field + *
text.”);

Chapter 2.11 Conditional statements (better-ticket-machine — on CD)
o Conditional statement;
* Takes action based on result of a test.
* Also called IF STATEMENTS.
* Type of BOOLEAN EXPRESSION: only returns TRUE or FALSE result.

* Form =

If (perform tests) {

Perform action if test is true
)
else{

Perform action if test is false

)




Sample from better-ticket-machine:
/ skk

*Receive an amount of money in cents from a customer.
* Check that the amount is sensible.
*/
public void insertMoney(int amount)
{
if(amount > 0) {
balance = balance + amount;

}
else {
System.out.println (" Use a positive amount: " +
amount);
}

Chapter 2.12 another conditional statement
* Shows how to add print and math operation to conditional statement
/>k>k
* Print a ticket if enough money has been inserted, and
* reduce the current balance by the ticket price. Print
* an error message if more money is required.
*/
public void printTicket()
{
if(balance >= price) {
/I Simulate the printing of a ticket.
System.out.printIn("#HEHHHHHHHHHEHE#),
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.printIn("#HH##HHHHHHFHHHHH"),
System.out.println();

// ' Update the total collected with the price.
total = total + price;
/I Reduce the balance by the prince.
balance = balance - price;
¥
else {
System.out.println("You must insert at least: " +
(price - balance) + " more cents.");



Chapter 2.13 Local variables
¢ Local variable:
o Variable declared and used in a single method. Scope and lifetime are limited
to method.
public int refundBalance()
{
int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;
¥
*  AmountTo Refund = local variable
* declared in — int amountToRefund,
* initialized — amountToRefund = balance,
* Can combine — int amountToRefund = balance;
o Never use private or public in declaration.

Chapter 2.14 Fields, Parameters, local variables
* All three types of variables:_Store values appropriate to defined type
* Fields:
o Defined outside constructors and methods
o Store data that lives through life of object, have lifetime as long as object’s
lifetime, maintain current state of object.
o Have class scope — extends through class. Can be used in any method or
constructor in class.
o Private fields cannot be accessed outside of class.
* Formal Parameters:
o Exist only for the time a constructor or method executes.
Values lost between calls.
Temporary storage areas
Defined in header of constructor or method
Receive values from outside.
Scope limited to defining constructor or method

O O O O O

* Local variables:
o Defined inside body of constructor or method
o Must be initialized only inside constructor or method . Receive no default
initialization.
Exist only for the time a constructor or method executes.
Values lost between calls.
Temporary storage areas
Scope limited to block in which they are defined.

O O O O

Chapter 2.16 (use lab-classes from CD)
* Substrings allow to return parts of string (i.e. first 4 characters).
*  From lab-classes:




[E*E

* Return the login name of this student. The login name is a combination
* of the first four characters of the student's name and the first three
* characters of the student's ID number.
*/
public String getLLoginName()
{
return name.substring(0,4) + id.substring(0,3);

¥

/**
* Print the student's name and ID number to the output terminal.
*/
public void print()
{
System.out.println(name + " (" +1id + ")");
}
¥

* name.substring (0,4) places first 4 characters of string into field, name.
* Returns: characters from beginlndex to (endindex — 1). First character is O.

Summary:
Vocab: field, comment, constructor, scoope, lifetime, assignment, method, accessor
method, mutator method, println, conditional, Boolean expression, local variable.



