[image: image1.png]Consider a grade-averaging scheme in which the final average of a student’s scorcs is computed differently from
the traditional average if the scores have “improved.” Scores have improved if each score is greater than or equal
o the previous score. The final average of the scores is computed as follows.

Astudenthas n scores indexed from 0 to n-1. If the scores have improved, only those scores with indexes
greater than or equal o 1/2. are averaged. I the scores have not improved, all the scores are averaged.

‘The following table shows several lits of scores and how they would be averaged using the scheme described
above.

Student Scores Improved? Final Average
50, 50, 20, 80, 53 No (50+50+20+80+53)/5.0=506
20, 50, 50, 53, 80 Yes (50+53+80)/3.0=61.0

20, 50, 50, 80 Yes (50+80)/2.0=650

Consider the following incomplete StudentRecord class declaration. Each StudentRecord object
stores a list of that student’s scores and contains methods to compute that student’s final average.



Chapter 8 Coding Exercise
[image: image2.png]public class StudentRecord
i
private int[] scores; // contains scores.length values
77 scores.length > 1

7/ constructors and other data fields not shown

// returns the average (arithmetic mean) of the values in scores
7/ whose subscripts are between first and last, inclusive

// precondition: 0 <= first <= last < scores.length

private double average(int first, int last)

© /7 to be implemented in part (a) */ )

// returns true if each successive value in scores is greater
7/ than or equal to the previous value:

7/ otherwise, returns false

private boolean hasImproved()

© /7 to be implemented in part (b) */ )

7/ if the values in scores have improved, returns the average
7/ of the elements in scores with indexes greater than or equal
7/ to scores.length/2;

// otherwise, returns the average of all of the values in scores
public double ‘inaliverage()

© /7 to be implemented in part (c) */ )




[image: image3.png](2) Write the StudentRecord method average. This method returns the average of the values in
Sscores given a starting and an ending index.

Complete method average below.

// returns the average (arithmetic mean) of the values in scores
7/ whose subscripts are between first and last, inclusive

7/ precondition: 0 <= first <= last < scores.length

private double average(int first, int last)

(b) Write the StudentRecord method hasImproved.
Complete method hasImproved below.
// returns true if each successive value in scores is greater
7/ than or equal to the previous value;

/1 otherwise, returns false
private boolean hasImproved()

(c) Write the StudentRecord method finalAverage.

Inwriting £inalAverage, youmust call the methods defined in parts (a) and (b). Assume that these

‘methods work as specified, regardless of what you wrote in parts (2) and (b).
Complete method £inalaverage below.

// if the values in scores have improved, returns the average
7/ of the elements in scores with indexes greater than or equal
77 to scores.length/2;

// otherwise, returns the average of all of the values in scores
public double finalAverage()




